在到 2050 年实现碳净零排放的压力下,能源系统正在持续转型去中心化和数字化。可再生能源(生物质能、水电、地热能、风能和太阳能)为能源安全、社会和经济发展、能源获取、减缓气候变化以及减少环境和健康影响提供了机会。
然而,能源系统中的信息正变得越来越复杂和分散,集中式结构效率低下,所以将可再生能源添加到现有的能源系统需要新的工具来保持运行稳定性和安全性。在此背景下,在可再生能源中集成区块链技术是实现能源可持续性的关键。
集成了区块链的能源系统(分布式能源系统)是一种旨在使能源更接近用户的新方法:区块链技术可以为分散的可再生能源系统提供一种主导电力市场的新方法。区块链可以促进分布式点对点交易,降低交易成本,通过密码学提高安全性,以及提高消费者的可选择选项。
区块链技术的出现和 2008 年比特币的诞生让研究人员能够探索区块链在金融、医疗保健、农业、能源等各个领域的好处。区块链作为一种分布式和数字交易技术,可以安全地存储数据,以及在 P2P 系统中执行智能合约。
区块链具有以下特点:去中心化、永久性和匿名性。用户对数字系统的信任不是由中央机构建立的,而是由协议、密码学和计算机代码建立的。所以,区块链极大地提高了组织和个人在这些网络内进行协作和交互的可能性。
区块链因其独特的特性而具有彻底改变能源领域的潜力。区块链在能源领域的应用非常广泛,并且在流程和平台方面都可以产生巨大的影响。仅仅在电力供应链流程中就有很多用例:网络、交易和营销平台;批发和 P2P 贸易。
区块链技术为能源行业提供了机遇,可以带来深远的变化,但同时也为能源行业的现有模式带来风险。
支持在能源市场使用区块链技术的最重要论据包括流程的简化和自动化、更高的透明度以及通过消除中介来降低交易成本。然而,也有一些反对在能源市场使用区块链技术的论据,其中特别包括交易速度慢、非法活动以及能源和资源的消耗。此外,还有一些基本的法律问题,例如数据保护。
在能源市场中集成区块链的潜在优势:
降低天然气或电力市场的交易成本,从而减少对营运资金的需求。降低成本还与为公用事业和电网运营商提供更多信息有关,以将可再生能源整合到电网中。区块链不需要中介,交易可以直接进行,从而降低了流程的复杂性和与之相关的成本。
热水器、电动汽车、电池、太阳能光伏装置等能源设备与电网运营商(智能电网)之间通信的新机会。
通过分散的可再生能源电网为服务不足的社区提供负担得起的能源。
节能加密:加密可以将任何数据或任何信息转换为代码以防止未经授权的访问。对节能数据进行加密并通过区块链共享可以使市场更安全。
节能交换:区块链技术似乎有一定的潜力(如果将节能换成可以购买的新节能产品),因为加密的节能数据可以存储在区块链平台上,以抵消电费或购买额外的能源服务。
正确评估节能:能源效率的评估非常困难,因为在许多情况下,能源效率的好处无法从技术上衡量或评估。将区块链与信息通信技术以及流程自动化相结合,可以在一定程度上帮助评估节能和相关收益。
增加透明度:由于区块链是一种分布式账本技术,数据可以在安全、防篡改、透明地传输。篡改区块链平台上共享的数据是一个非常昂贵且技术上不可行的过程。
提高可靠性:如果数据存储在一个传统能源系统中,由于收集信息需要时间,因此很难对其进行跟踪和验证。由于区块链是一种去信任的分布式账本技术,数据存储在不同的区块中,这可以大大提高整个系统的可靠性。
提高安全性和客户信任度:集成区块链,意味着客户的节能数据、来自金融机构的信息或与能源市场中任何利益相关者有关的数据都将被加密。借助智能合约功能,区块链还可以使流程自动化而不是手动,这有助于增加客户对系统的信任。
区块链对能源公司运营的潜在积极影响:
计费:区块链、智能合约和智能电表可以为消费者和分散的小型发电机实现自动计费。公用事业可以从能源小额支付、预付费电表支付平台的潜力中受益。
销售和营销:销售实践可能会根据消费者的能源使用状况、个人偏好和环境问题而改变。区块链与机器学习等人工智能技术相结合,可以确定能源消耗模式,从而提供增值能源产品。
智能电网应用和数据通信:区块链可以用于连接智能设备、传输或存储数据。智能电网上的智能设备包括智能电表、先进传感器、网络监控设备、能源监控和管理系统,以及智能家居能源控制器和楼宇监控系统。除了确保安全的数据传输,智能电网应用还可以进一步受益于区块链技术支持的数据标准化。
(智能电网是一种自动化的电力网络,可实现电网与其客户之间的双向通信交易。)
网格治理:区块链可以提供集成的交易平台并优化灵活的资源,否则会导致昂贵的网络升级。
安全和身份管理:交易的安全性可以从区块链技术中受益。区块链可以保护隐私、数据机密性和身份管理。
资源共享:区块链可以为多个用户之间共享资源提供充电解决方案,例如共享电动汽车充电基础设施、数据或共享的集中式社区存储。
竞争:智能合约有可能让更换能源供应商变得更容易、更快捷。增加市场流动性可能会增加竞争并可能降低能源关税。
透明度:不可变的记录和透明的流程可以大大提高审计和合规性。
大规模采区块链的限制/挑战:
可扩展性和功耗:由于其设计,公共区块链上的每笔交易通常需要高功耗,并且在确认交易之前可能会有很长时间的延迟。
缺乏明确和一致的监管:虽然日本和欧洲等不同国家/地区已经开始制定有关区块链的法规,但缺乏全球统一的法规是区块链在能源领域采用的主要障碍。需要制定明确和一致的法规来管理未来的分布式能源系统,规范电价并解决可能的纠纷。
有限的电网基础设施:优化区块链在能源领域的使用需要更加互联的智能电网。
数据保护:控制大部分网络的攻击者可以中断新区块的记录并阻止交易完成。这种类型的攻击对较小的网络构成了更高的风险,因为接管 51% 以上的网络在大型区块链中所需的处理能力将是巨大的。
因此,区块链有可能改变能源效率市场,并有可能破坏现有能源公司已建立的商业模式和传统角色。
就能源领域而言,区块链技术已被证明是近期的重大技术突破之一。区块链用例可以根据其目的和活动领域分为八组:
计量/计费和安全;
加密货币、代币和投资;
去中心化能源交易;
绿色证书和碳交易;
网格管理;
物联网、智能设备、自动化和资产管理;
电动汽车;
通用举措。
最近发表在 ScienceDirect 的一项研究表明,大约三分之一的用例与去中心化能源交易相关,其中包括批发、零售和 P2P 能源交易计划。第二个最受欢迎的类别是加密货币、代币和投资,占五分之一的用例。其次是物联网、智能设备、自动化和资产管理,以及会计、计费和安全,分别占总用例的 11% 和 9%。其他项目占总数的 6-7%:
区块链活动也可以根据使用的平台和共识算法进行分类。60% 正在开发基于以太坊的解决方案作为起点,而 55% 使用过 PoW 算法。
此外,大多数开发人员都面向对企业最具吸引力的私有区块链平台。Energy Web(专为能源行业设计的基于以太坊的区块链)吸引了 10% 的已公开披露的项目,也是能源公用事业公司的首选解决方案。其他流行的平台包括 Hyperledger 和 Tendermint。未来的新项目可能会转向更可扩展、更快、更节能的区块链,探索 PoS 或 BFT 等区块链解决方案。
计量/计费和安全:
一些开发人员正在探索在计量和计费过程中使用区块链技术。当与计量基础设施集成时,区块链可以为消费者使用的能源服务自动计费,并有可能降低管理成本。区块链可以提供能源生产和消耗跟踪,告知消费者能源供应的来源和成本,使能源支付更加透明。此外,区块链安全功能可用于保护数据隐私、身份管理。
能源领域的首批区块链应用之一是接受加密货币来支付能源和电力。事实上,越来越多的公司正在接受加密支付,包括能源行业的几家公司。例如,BAS Nederland 成为第一家接受比特币作为电费支付新形式的能源公司。其他公用事业公司如 Enercity和 Elegant 也紧随其后。借助 Enercity,住宅客户可以通过互联网进行支付,并使比特币自动兑换欧元。Elegant 引入了加密支付,用于提供能源服务,包括天然气和电力。
区块链技术可以以一种更加分散的方式管理智能电表数据,避免对单一数据权限的需求,从而避免单点故障。但新的挑战也出现了,将区块链技术应用于智能电表的一个关键先决条件是拥有一个有效的智能电表基础设施,智能电表和区块链的集成将产生巨大的开发成本,特别是因为智能电表基础设施已经在几个没有区块链功能的国家部署。此外,还需要制定新的标准以确保互操作性。
加密货币、代币和投资
加密货币是迄今为止最受欢迎和理解最广泛的区块链应用之一,市场上出现了越来越多的新加密货币和能源代币。
专门为能源应用发行加密货币可能具有一些优势,因为这种加密货币的分配和使用可以留给那些在系统中拥有最大利益或提供最多公共利益服务的人(例如,在可再生能源应用中,如果发电机产生碳密集度最低的能源,他们可以获得更多的加密货币奖励)。
越来越多的企业正在使用加密货币作为吸引投资和资金的工具(也称为初始代币发行)。新的加密货币也可用于奖励期望的行为并促进对可再生能源的投资。
为鼓励使用可再生能源而发行的加密货币包括:
SolarCoins:
欢迎光临 优惠论坛 (http://tcelue.ooo/) | Powered by Discuz! X3.1 |